Improved Synthesis of Isoguanosine and 6-Substituted Xanthosine Derivatives

Lorenzo De Napoli, Daniela Montesarchio, Gennaro Piccialli,* Ciro Santacroce and Michela Varra Dipartimento di Chimica Organica e Biologica, Universita' di Napoli "Federico II", via Mezzocannone 16, I-80134 Napoli, Italy

Isoguanosine 1 was obtained in 76% overall yield starting from 2',3',5'-tri-O-acetylxanthosine 3 in a reaction involving the chloro derivative 4 and the N-(purin-6-yl)pyridinium salt derivative 8 which also proved to be new and valuable synthetic intermediates in the obtainment of C-6-substituted xanthosine derivatives.

Isoguanosine 1, known as crotonoside or 2-hydroxyadenosine, is a naturally occurring isomer of guanosine and was first isolated from *Croton tiglium*.¹ Interesting biological activities have been reported for this guanosine analogue, such as incorporation into mammalian, but not bacterial, nucleic acids,² stimulation of the accumulation of cyclic-AMP in the brain,³ and inhibition of inosine monophosphate (IMP) pyrophosphorylase⁴ and glutamic acid dehydrogenase.⁵

Several methods for the synthesis of compound 1 have been

reported in the literature. Some of these use 5-amino-1-(β -D-ribofuranosyl)imidazole-4-carboxamide⁶ as precursor of purine nucleoside base formation. Others start from a preformed purine nucleoside such as 2-aminoadenosine,⁷ adenosine *N*-1-oxide⁸ or 2-amino-6-chloropurine,⁹ and involve a number of transformations of the base functional groups.

The last methods need several steps to circumvent the nonavailability of a direct synthetic route to the 6-chloroxanthosine 5 which is undoubtedly the key intermediate in the synthesis of isoguanosine 1. In fact the previously reported chlorination procedures¹⁰ on sugar-protected xanthosines led only to the 2,6-dichloro derivative, never giving monohalogenation at the C-6 base position. On the other hand, partial basic hydrolysis of the 2,6-dichlorinated compounds led exclusively to the corresponding 2-chloro-6-oxo derivative as a result of the higher reactivity of the C-6 position towards nucleophiles.¹⁰

We report here an easy synthesis of the 6-chloroxanthosine derivative 4 from which isoguanosine 1 and C-6-substituted analogues 6–10 could be obtained in a one-pot reaction in very high yields. Our chlorination procedure is related to a previously reported method,¹¹ which uses the adduct triphenylphosphine-carbon tetrachloride $(PPh_3-CCl_4)^{12}$ to introduce a chlorine atom at the C-4 base position of pyrimidine nucleosides and at the C-6 base position of inosine under very mild conditions (Scheme 1).

As a starting product in the chlorination we used 2',3',5'-tri-O-acetylxanthosine **3**, synthesized by reaction of xanthosine **2** with Ac₂O in pyridine. This product was allowed to react with 2 mol equiv. of PPh₃ in CH₂Cl₂-CCl₄ (1:1, v/v) at reflux for 3 h to obtain the desired target compound **4** as the main product. The reaction mixture was dried *in vacuo* and the residue, dissolved in CHCl₃, was purified on a silica gel column eluted with increasing amounts of MeOH in CHCl₃ (up to 6%) and thus furnished pure chloride 4 (84% yield) whose structure was confirmed by spectral data. This reaction proceeds speedily and in higher yields than does the chlorination of 3',5'-di-Oacetyl-2'-deoxyinosine¹¹ which requires, in addition, 1,8diazabicyclo[5.4.0]undec-7-ene (DBU) as catalyst to increase the nucleophilicity of the O-6 function towards the adduct [Ph₃P-CCl₃]⁺ Cl⁻. Using this adduct, the chlorination on the 2,6-dioxopurine nucleoside seems to be comparable to the C-4 chlorination of the 2,4-dioxopyrimidine derivative (thymidine and uridine),¹¹ assuring high yields and a selective, fast reaction.

In order to explore the reactivity of compound 4 towards nucleophiles we treated it with 6 mol equiv. of MeOK in MeOH (20 h; room temp.) and with 10 mol equiv. of NaN₃ [dimethylformamide (DMF); 1.5 h; room temp.] and obtained the 6-methoxy derivative 6 (85% yield) and the tetrazolo-[5,1-i]purine derivative 7 (90% yield), respectively. On the other hand, treatment with conc. aq. ammonia (3 h; 50 °C) gave the sole deacetylated product 5 (90% yield), with no apparent C-6 substitution taking place; only with a prolonged reaction time (3 days: 55 °C) was isoguanosine formed, and then in low yield (20%). Reaction of chloride 4 with aq. pyridine proceeded rapidly (2 h; 50 °C) to afford N-[2-oxo-9-(2',3',5'-tri-O-acetylβ-D-ribofuranosyl)-2,3-dihydropurin-6-yl]pyridinium chloride 8 which was obtained pure as a yellow glass in almost quantitative yield after repeated evaporation of water. The structure 8 was assigned on the basis of its spectral data. As reported for some N-(purin-6-yl)monopyridinium salts,13 compound 8 showed a pH-dependent UV spectrum, indicative of the occurrence of a prototropic equilibrium, and exhibited fluorescence in water at room temperature with the emission maximum at 445 nm (exc. 303 nm).

When the salt 8 was treated with aq. ammonia (5 h; 50 °C), isoguanosine 1 was obtained as the sole product. Analogously, reactions of compound 8 with propylamine or benzylamine afforded, in both cases, isoguanosine 1 in high yields, thus confirming that these reactions proceed via a nucleophilic attack on the pyridinium α -carbons with subsequent opening of the ring (Zincke reaction).¹⁴

Isoguanosine 1 was purified on a reversed-phase HPLC column using MeOH-water (7:3) as eluent (91% yield on isolated product). Crystallization from water-MeOH (95:5) furnished crystals of isoguanosine 1, m.p. 236-241 °C (lit.,¹⁵ 237-241 °C). The structure of compound 1 was confirmed by comparison of its spectroscopic data with those already reported.^{6,9,15}

On the other hand, when the salt 8 was treated with a weak nucleophile such as NaN_3 (DMF; 1.5 h; room temp.) or 2-sulfanylethanol (10 h; room temp.), then nucleophilic attack took place on the C-6 purine carbon to give compounds 7 and 10, isolated in 87 and 70% yield, respectively, after silica gel chromatography.

Scheme 1 Reagents and conditions: i, Ac_2O -pyridine, 5 h, room temp.; ii, PPh₃ (2 mol equiv.), CCl₄, 3 h, reflux; iii, aq. NH₃ (32%), 3 h, 50 °C; iv, MeOK (1 mol dm⁻³), MeOH, 20 h, room temp.; v, pyridine-water (1:1), 2 h, 50 °C; vi, NaN₃ (10 mol equiv.), DMF, 1.5 h, room temp.; vii, HSCH₂CH₂OH, 10 h, room temp.; viii, aq. NH₃ (32%), 5 h, 50 °C; ix, aq. NH₃ (32%), 3 days, room temp.

The reported procedure proposes a new and easily accessible method of activation towards nucleophiles, under very mild conditions, of the C-6 position of xanthosine derivatives. The halogenation furnishes, in high yields, the valuable synthetic intermediate 4, which can be converted into the new and more reactive compound 8, a useful precursor for a convenient synthesis of isoguanosine 1 and other C-6-substituted xanthosine analogues.

Experimental

General Procedures.—TLC plates (Merck, silica gel 60, F254) were developed in solvent systems: A [CHCl₃-MeOH (9:1, v/v]; B [butan-1-ol-acetic acid-water (60:15:25, v/v)]. HPLC was carried out on a Lichrosorb RP-18 column (Merck, 7 μ m, 250-10). Macherey-Nagel silica gel 60 was used for column chromatography. Liquid chromatography was carried out on a Lobar Lichroprep RP-18 column (Merck, 40–63 μ m, 310-25). PPh₃ was dried under reduced pressure at 50 °C for 15 h. CH₂Cl₂ and CCl₄ were dried by treatment with P₂O₅ and were then distilled. The ¹H NMR and ¹³C spectra were recorded on a Bruker WM 270 instrument (270 MHz); J values are given in Hz. FAB mass spectra (positive) were determined with a double-focusing mass spectrometer (ZAB 2SE). UV spectra were taken on a Perkin-Elmer lambda 7 spectrophotometer. M.p.s were determined on a Reichert Thermovar apparatus and are uncorrected. Optical rotations were measured with a Perkin-Elmer 141 polarimeter at 25 °C, and are quoted in units of $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$.

6-Chloro-9-(2',3',5'-tri-O-acetyl-β-D-ribofuranosyl)-2,3-dihydropurin-2-one 4.-2',3',5'-Tri-O-acetylxanthosine 3 (410 mg, 1 mmol) and triphenylphosphine (524 mg, 2 mmol) were dissolved in CH₂Cl₂-CCl₄ [(1:1, v/v); 12 cm³] and the resulting mixture was stirred and kept at reflux for 3 h. Then the mixture was cooled, concentrated under reduced pressure, and purified on a silica gel column eluted with increasing amounts of MeOH in CHCl₃ (up to 6%) to afford a pure chloride 4 as a solid (360 mg, 84%), R_f 0.7 (system A); m.p. 130-132 °C (from CHCl₃-C₆H₆) (Found: C, 44.8; H, 3.9; N, 13.3. C₁₆H₁₇ClN₄O₈ requires C, 44.8; H, 4.0; N, 13.1%); $[\alpha]_{\rm D} - 4.6$ (c 0.10, CHCl₃); $\lambda_{\rm max}$ (CHCl₃)/nm 284 (ε /dm³ mol⁻¹ cm⁻¹ 7500) and 241 (3300); m/z (FAB) 429 (MH⁺); $\delta_{\rm H}$ (CDCl₃) 8.13 (1 H, s, 8-H), 6.18 (1 H, d, J 5.0, 1'-H), 5.80 (1 H, t, J 5.0, 2'-H), 5.53 (1 H, dd, J 5.0 and 4.6, 3'-H), 4.42 (3 H, overlapped signals, 4'-H and 5'-H₂) and 2.07, 2.11 and 2.13 (3 H each, s, Ac); $\delta_{\rm C}({\rm CDCl}_3)$ 170.4, 169.5, 169.4, 160.9, 154.2, 151.1, 142.3, 132.1, 85.9, 80.4, 73.1, 70.5, 62.9, 20.7, 20.5 and 20.3.

6-Chloro-9-(β-D-ribofuranosyl)-2,3-dihydropurin-2-one **5**.— Triacetate **4** (214 mg, 0.5 mmol) was treated with conc. aq. NH₃ (10 cm³) in a closed vessel at 50 °C for 3 h. The mixture was dried, concentrated under reduced pressure, and purified on an RP 18 Lobar column, eluted with increasing amounts of MeOH in water (up to 20%) to afford pure *compound* **5** as an amorphous powder (136 mg, 90%). When recrystallized, the compound decomposed without prior melting when heated; R_f 0.75 (system B) (Found: C, 39.5; H, 3.6; N, 18.5. C₁₀H₁₁ClN₄O₅ requires C, 39.7; H, 3.7; N, 18.5%); [α]_D - 37.2 (c 0.08, water); λ_{max} (water)/nm 309 (5000) and 244 (3100); m/z (FAB) 303 (MH⁺); δ_H (CD₃OD) 8.25 (1 H, s, 8-H), 5.92 (1 H, d, J 5.8, 1'-H), 4.74 (1 H, t, J 5.6, 2'-H), 4.36 (1 H, dd, J 5.6 and 3.3, 3'-H), 4.16 (1 H, m, 4'-H) and 3.84 (2 H, m, 5'-H₂).

6-Methoxy-9-(β-D-ribofuranosyl)-2,3-dihydropurin-2-one **6**. —Chloride **4** (214 mg, 0.5 mmol) was treated with a stirred solution of MeOK in MeOH (1 mol dm⁻³; 3 cm³). After 20 h at room temp. the mixture was neutralized with acetic acid and purified on an RP 18 column as reported for product **5**, to afford pure compound **6** as a solid (126 mg, 85%). The recrystallized compound decomposed without prior melting when heated; R_f 0.6 (system B) (Found: C, 44.1; H, 4.6; N, 18.9. C₁₁H₁₄N₄O₆ requires C, 44.3; H, 4.7; N, 18.8%); [α]_D – 42.1 (c 0.09, water); λ_{max} (water)/nm 282 (5500) and 241 (3800); m/z (FAB) 299 (MH⁺); δ_H (D₂O) 7.95 (1 H, s, 8-H), 5.90 (1 H, d, J 6.0, 1'-H), 4.73 (1 H, t, J 6.0, 2'-H), 4.40 (1 H, dd, J 6.0 and 3.4, 3'-H), 4.26 (1 H, m, 4'-H), 4.06 (3 H, s, MeO) and 3.85 (2 H, m, 5'-H₂).

7-(2',3',5'-Tri-O-acetyl-β-D-ribofuranosyl)-5,6-dihydrotetrazolo[5,1-i]purin-5(7H)-one 7.—(a) From chloride 4. Compound 4 (250 mg, 0.6 mmol) was treated in DMF (4 cm³) with 10 mol equiv. of NaN₃ and the stirred mixture was kept at room temp. for 1.5 h. Then the mixture, dried *in vacuo*, was suspended in MeCN and this mixture was filtered. The filtrate was concentrated under reduced pressure and purified on a silica gel column with increasing amounts of MeOH in CHCl₃ (up to 25%) as eluent. Concentration of the appropriate fractions gave *tricycle* 7 as an amorphous powder (235 mg, 90%).

(b) From salt 8. Compound 8 (203 mg, 0.4 mmol) was treated in stirred DMF (4 cm³) with 10 mol equiv. of NaN₃ at room temp. After 1.5 h the mixture was dried *in vacuo* and purified as described above to furnish pure tricycle 7 (151 mg, 87%), $R_f 0.5$ (system B) (Found: C, 43.9; H, 4.0; N, 22.3. $C_{16}H_{17}N_7O_8$ requires C, 44.1; H, 3.9; N, 22.5%); $[\alpha]_D - 9.6$ (*c* 0.07, MeCN); λ_{max} (MeCN)/nm 268 (8200) and 296 (7200); *m/z* (FAB) 436 (MH⁺); δ_H (CD₃OD) 8.05 (1 H, s, 8-H), 6.21 (1 H, d, J 5.2, 1'-H), 5.93 (1 H, dd, J 5.4 and 5.2, 2'-H), 5.62 (1 H, m, 3'-H), 4.42 (3 H, complex signal, 5'-H₂ and 4'-H) and 2.11, 2.08 and 2.06 (3 H each, s, Ac); δ_C (CD₃OD) 172.7, 171.9, 171.6, 150.9, 148.7, 145.3, 138.0, 111.1, 87.7, 81.6, 74.8, 72.2, 64.7, 20.9, 20.7 and 20.6.

N-[2-Oxo-9-(2',3',5'-tri-O-acetyl-β-D-ribofuranosyl)-2,3-dihydropurin-6-yl]pyridinium Chloride 8.—Compound 4 (342 mg, 0.8 mmol) was treated with a solution of pyridine-water $[1:1 (v/v); 5 \text{ cm}^3]$. After 2 h at 50 °C the mixture was dried, and evaporation of water under reduced pressure three times, afforded pure compound 8 (394 mg, 97%) as a yellow glass, $R_{\rm f}$ 0.15 (system B) (Found: C, 49.4; H, 4.2; N, 14.0. $C_{21}H_{22}CIN_5O_8$ requires C, 49.7; H, 4.4; N, 13.8%); $[\alpha]_D - 45.1$ (c 0.13, water); λ_{max} (water)/nm 374 (4100) and 262 (11 000); λ_{max} (0.1 mol dm⁻³ HCl)/nm 329 (3900) and 268 (4100); fluorescence (water) λ_{max} 445 nm (exc. 303 nm); FAB mass spectroscopy failed to give the (MH⁺) ion peak; $\delta_{\rm H}({\rm D_2O})$ 9.99 (2 H, d, J 6.6, pyridinium a-H), 8.94 (1 H, t, J 6.6, pyridinium γ-H); 8.58 (1 H, s, 8-H), 8.41 (2 H, t, J 6.6, pyridinium β-H), 6.40 (1 H, d, J 4.5, 1'-H), 6.01 (1 H, t, J 4.5, 2'-H), 5.78 (1 H, t, J 4.5, 3'-H), 4.66 (1 H, m, 4'-H), 4.50 (2 H, m, 5'-H₂) and 2.23, 2.18 and 2.12 (3 H each, s, Ac); $\delta_{\rm C}({\rm D_2O}; 1,4\text{-dioxane as internal})$ reference, δ_{C} 67.4) 174.4, 173.6 173.5, 162.5 158.3, 151.2, 148.3, 146.9, 143.9, 129.2, 120.8, 87.8, 80.8, 74.1, 71.1, 63.8, 21.0, 20.8 and 20.7.

N-[2-Oxo-9-(β-D-ribofuranosyl)-2,3-dihydropurin-6-yl]pyridinium Chloride 9.—The chloride 5 (121 mg, 0.4 mmol) was treated with a solution of pyridine–water [1:1 (v/v); 4 cm³]. After 2 h at 50 °C the mixture was dried, and evaporation of water three times afforded pure compound 9 as a yellow oil (146 mg, 96%), R_f 0.1 (system B) (Found: C, 46.9; H, 4.1; N, 18.5. C_{1.5}H₁₆ClN₅O₅ requires C, 47.2; H, 4.2; N, 18.3%); λ_{max} (water)/nm 374 (4000), 262 (10 500); λ_{max} (0.1 mol dm⁻³ HCl)/nm 330 (3800) and 268 (4900); FAB mass spectroscopy failed to give the (MH⁺) ion peak; δ_H (D₂O) 9.77 (2 H, d, J 8.0, pyridinium α-H), 8.83 (1 H, t, J 6.6, pyridinium γ-H), 8.32 (2 H, t, J 8.0, pyridinium β-H), 8.28 (1 H, s, 8-H), 5.97 (1 H, d, J 6.0, 1'-H), 5.78 (1 H, dd, J 6.0 and 4.0, 3'-H), 4.83 (1 H, t, J 6.0, 2'-H), 4.25 (1 H, m, 4'-H) and 3.86 (2 H, m, 5'-H₂).

6-(2-Hydroxyethylsulfanyl)-9-(2',3',5'-tri-O-acetyl-β-D-ribofuranosyl)-2,3-dihydropurin-2-one **10**.—The salt **8** (214 mg, 0.5 mmol) was treated with an excess of 2-sulfanylethanol. After 10 h at room temp. the mixture was dried *in vacuo* and purified on silica gel column eluted with increasing amounts of MeOH in CHCl₃ (up to 20%) to afford pure sulfide **10** as a oil (132 mg, 70%), R_f 0.6 (system A) (Found: C, 46.0; H, 4.5; N, 12.0. C₁₈H₂₂N₄O₉S requires C, 45.9; H, 4.7; N, 11.9%); $[\alpha]_D$ – 6.1 (*c* 0.03, MeOH); λ_{max} (MeOH)/nm 301 (6000), 293 (6050) and 250 (3350); m/z (FAB) 471 (MH⁺); δ_H (CD₃OD) 8.20 (1 H, s, 8-H), 6.15 (1 H, d, J 6.0, 1'-H), 5.94 (1 H, t, J 6.0, 2'-H), 5.62 (1 H, dd, J 6.0 and 3.9, 3'-H), 4.41 (3 H, overlapped signals, 4'-H and 5'-H₂), 3.86 and 3.49 (2 H each, t, J 6.8, SCH_2CH_2OH) and 2.13, 2.09 and 2.06 (3 H each, s, Ac).

Isoguanosine 1.—The salt 8 (253 mg, 0.5 mmol) was treated with conc. aq. ammonia (32%; 10 cm³) at 50 °C. After 5 h the red solution (colour indicative of the Zincke reaction) was evaporated under reduced pressure and the residue, dissolved in water, was purified by HPLC on a reversed-phase C_{18} column eluted with MeOH–water (7:3, v/v). Concentration of the appropriate fractions gave isoguanosine 1 (128 mg, 91%), R_f 0.3 (system B), identical (TLC, UV and ¹H NMR)^{6,9,15} with authentic material.

Acknowledgements

We are grateful to CNR and MURST for grants in support of these investigations. The mass spectral data were provided by the "Servizio di Spettrometria di Massa del CNR e dell'Universita' di Napoli". Throughout the NMR work the facilities of the "Centro di Metodologie Chimiche-Fisiche dell'Universita' di Napoli" were used.

References

- E. Cherbuliez and K. Bernahard, *Helv. Chim. Acta*, 1932, 15, 464.
 B. A. Lowy, J. Davoll and G. B. Brown, *J. Biol. Chem.*, 1952, 197, 591; M. E. Balis, D. H. Levin, G. B. Brown, J. B. Elion,
- H. Vanderwerff and G. H. Hitchings, J. Biol. Chem., 1952, 199, 227.
- 3 M. Huang, H. Shimizu and J. W. Daly, J. Med. Chem., 1972, 15, 462.
- 4 C. Hgen, Biochim. Biophys. Acta, 1973, 293, 105.
- 5 H. H. Montsch, I. Goia, M. Kezdi, O. Barzu, M. Dansoreanu, G. Jebeleanu and N. G. Ty, *Biochemistry*, 1975, 14, 5593.
- 6 A. Yamazaki, I. Kumashiro, T. Takenishi and M. Ikehara, *Chem. Pharm. Bull.*, 1968, 16, 2172; J.-Y. Chern, H.-Y. Lee, M, Huan and F. Y. Shish, *Tetrahedron Lett.*, 1987, 28, 2151.
- 7 J. Davol, J. Am. Chem. Soc., 1951, 73, 3174.
- 8 F. Cramer and G. Schlingloff, Tetrahedron Lett., 1964, 3201.
- 9 K. J. Divakar, M. Mottahedeh, C. B. Reese, Y. S. Sanghvi and K. A. D. Swift, J. Chem. Soc., Perkin Trans. 1, 1991, 771.
- 10 J. H. Lister, *Purines*, in *Fused Pyrimidines*, ed. D. J. Brown, Wiley-Interscience, New York, 1971, Part II, Ch. 2 and 4; L. B. Townsend, in *Nucleoside Analogues*, eds. R. T. Walker, E. De Clercq and F. Eckstein, Plenum, New York, 1979, pp. 193-223.
- 11 L. De Napoli, A. Messere, D., Montesarchio, G. Piccialli, C. Santacroce and M. Varra, J. Chem. Soc., Perkin Trans. 1, 1994, 923; L. De Napoli, A. Messere, D. Montesarchio, G. Piccialli and C. Santacroce, Nucleosides, Nucleotides, 1991, 10, 1719; Biorg. Med. Chem. Lett., 1992, 2, 315.
- 12 R. Appel, Angew. Chem., Int. Ed. Engl., 1975, 14, 801.
- 13 B. Skalski, G. Wenska, Z. Gdaniec and R. W. Adamiak, *Tetrahedron*, 1993, **49**, 5859 and references cited therein.
- 14 T. Zincke, Justus Liebigs Ann. Chem., 1903, 330, 361; F. Krohnke, Angew. Chem., 1963, 75, 317; E. P. Lira, J. Heterocycl. Chem., 1972, 9, 713.
- 15 V. N. Nair and D. Young, J. Org. Chem., 1985, 50, 406.

Paper 4/04412F Received 19th July 1994 Accepted 9th September 1994